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Abstract

We consider the Pohlmeyer-reduced formulation of the AdS5 ×S5 superstring.
It is constructed by introducing new variables which are algebraically related to
supercoset current components so that the Virasoro conditions are automatically
solved. The reduced theory is a gauged WZW model supplemented with an
integrable potential and fermionic terms that ensure its UV finiteness. The
original superstring theory and its reduced counterpart are closely related at
the classical level, and we conjecture that they remain related at the quantum
level as well, in the sense that their quantum partition functions evaluated on
respective classical solutions are equal. We provide evidence for the validity
of this conjecture at the one-loop level, i.e. at the first non-trivial order of the
semiclassical expansion near several classes of classical solutions.

PACS numbers: 11.10.−z, 11.25.Tq

1. Introduction

In this paper we continue the investigation of the Pohlmeyer-reduced form of the AdS5 × S5

superstring theory initiated in [1–4].
The original Pohlmeyer reduction procedure [5] relates the classical equations of motion

of the sigma model on S2 to the sine-Gordon equation. The reduction may be interpreted
[6–8], as solving the Virasoro conditions in the classical conformal-gauge string theory on
Rt × S2 (with the residual conformal diffeomorphisms fixed by t = μτ condition) in terms
of the remaining physical degree of freedom: identified as the angle variable of the sine-
Gordon model. This relation between the S2 sigma model and the sine-Gordon model (and
its generalizations to other similar bosonic sigma models) was used for explicit construction

1 Also at Lebedev Institute, Russian Academy of Sciences, Leninskiy prospekt 53, Moscow, Russia.
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of several interesting classical string solutions on symmetric spaces such as Sn and AdSn (see,
e.g., [9–17]).

An attractive feature of the Pohlmeyer-reduced form of the string theory sigma model is
that while it involves only the physical (‘transverse’) degrees of freedom it still has manifest
2D Lorentz invariance. It would be very useful to have such a formulation for the quantum
AdS5 × S5 string theory.

Starting with the equations of motion of the AdS5 × S5 superstring described by the
F
G

= PSU(2,2|4)

Sp(2, 2)×Sp(4)
supercoset, which may be written in terms of the PSU(2, 2|4) current one

may solve the Virasoro conditions by introducing the new variables g ∈ G = Sp(2, 2) ×
Sp(4), A± ∈ h,2 and �L,R , which are algebraically related to the current components. The
resulting equations can then be obtained from a local action Ired(g,A±, �L,R) which happens
to be the G/H gauged WZW model modified by an H-invariant potential and supplemented
by the 2D fermionic terms (see [1] and (2.24), (2.25) below). This action, which defines
the reduced theory, is 2D Lorentz invariant and (after fixing the residual H gauge symmetry)
involves only the physical number (8+8) of bosonic and fermionic degrees of freedom.

The original AdS5×S5 superstring theory and the reduced theory are essentially equivalent
at the classical level, having closely related integrable structures and sets of classical solutions.
The question that we would like to address here is if this correspondence may extend to the
quantum level.

Since the classical Pohlmeyer reduction utilizes conformal invariance, it has a chance to
apply at the quantum level only if the sigma model one starts with is UV finite. This is the
case for the AdS5 × S5 superstring sigma model [18–21], which is a combination of the AdS5

and the S5 sigma models ‘glued’ together by the Green–Schwarz fermions into a conformal
2D theory. For consistency, the corresponding reduced theory [1, 2], should also be UV finite.
That was indeed shown to be true to the two-loop orders and is expected to be true also to all
orders [4].

It should be emphasized that we are interested in the reduced theory only as a tool for
describing observables of the original string theory: it is the string theory that should dictate
those quantities one should compute in the reduced theory3.

Since the construction of the reduced theory from string theory equations of motion
involves rewriting the theory in terms of the currents, the original superstring coordinates are
effectively non-local functions of the new reduced theory variables. As was noticed in [1],
the part of the reduced theory action given by the sum of the bosonic interaction potential
and the fermionic ‘Yukawa’ term is essentially the same as the original AdS5 × S5 GS action
expressed in terms of the new variables. This suggests that the two theories may actually be
related by a non-trivial change of variables (from fields to currents) in the path integral, similar
to the one used in the non-Abelian duality transformations (cf [22, 8]).

More precisely, the string theory path integral should contain delta functions of
the Virasoro constraints, δ(T++)δ(T−−), and the change of variables from the supercoset
coordinates to currents and to the reduced theory fields should solve these constraints.
Heuristically, the additional gauged WZW and ‘free’ fermionic terms present in the reduced
theory action may originate from the functional Jacobian of this change of variables.

2 h is the Lie algebra of the subgroup H = SO(4) × SO(4) = [SU(2)]4 of the group G.
3 In particular, one may not be able to translate some characteristics of solitons in the reduced theory directly into
meaningful quantities in string theory, etc. For example, the energies of the corresponding solutions in the reduced
theory and in the string theory may be related (if at all) in a nontrivial way (cf [10]).
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With this motivation in mind, here we propose the conjecture that the quantum string
theory partition function (e.g., on a plane or on a cylinder) should be equal to the quantum
reduced theory partition function,

Z(�)
string theory = Z(�)

reduced theory. (1.1)

Since these two theories have the same number (8+8) of independent degrees of freedom this
equality is obviously true in the trivial vacuum (BMN) case.

The aim of this paper is to provide evidence for this conjecture in the one-loop
approximation, i.e. by expanding both sides of (1.1) near the corresponding classical solutions
and computing the determinants of the quadratic fluctuation operators4.

Given the classical equivalence between the string theory and the reduced theory the
relation between the one-loop corrections which are determined by the quadratic fluctuation
spectra may not look too surprising: after all, the quadratic fluctuation operators can be found
from the classical equations of motion and thus should be expected to be in correspondence.
However, given that the reduction procedure involves nontrivial steps of non-local change
of variables and partial gauge fixing the general proof of the equivalence of the one-loop
partition functions defined directly by the two actions appears to be non-trivial (and will not
be attempted here).

Below we shall explicitly verify (1.1) in the one-loop approximation for a few simple
classes of string solutions and their counterparts in the reduced theory: (i) generic string
solutions localized in the AdS2 × S2 part of AdS5 × S5, and (ii) the homogeneous string
solution representing a spinning string in S3 part of S5.

We shall start in section 2 with a review of the classical Pohlmeyer reduction for the
AdS5 × S5 superstring theory following [1]. We shall mention the possibility of introducing
an automorphism τ of the algebra of H in the construction of the reduced theory action (which
then generalizes to an asymmetrically gauged G/H WZW model) and also comment on the
vacuum structure of the reduced theory (section 2.2).

In section 3 we will consider the quadratic fluctuations of the conformal-gauge string
theory equations of motion around classical string solutions. Here the fluctuating fields are
string coordinates rather than currents but one can parametrize the dependence on the classical
background in terms of the classical values of the current components. This allows one to
start with a classical solution of the reduced theory and find the string fluctuation equations
near the corresponding classical string solution. We shall apply this procedure to the case of
generic AdS2 × S2 string solutions (section 3.2), preparing the ground for comparing with the
fluctuation spectrum in the reduced theory.

In section 4 we will start with the action of the reduced theory and expand it to quadratic
order near its classical solution. We will then specialize to the case of the reduced theory
background corresponding to the generic string theory solution localized in the AdS2 × S2

subspace of AdS5 × S5 (section 4.2). Comparing to the quadratic fluctuation operators found
on the string theory side in section 3 we will then be able to conclude that they match
and thus (1.1) should be true at least in the one-loop approximation. The same conclusion
will be reached in the case of homogeneous string solutions in Rt × S3 and in AdS3 × S1

(section 4.3).
Section 5 will contain a summary and remarks on open problems.

4 The classical parts of the partition functions determined by the values of the actions evaluated on the respective
solutions will not match in general. The values of the two classical actions do not coincide on generic solutions which
may not be surprising if part of the reduced theory action may be indeed interpreted as coming from the Jacobian of
change of variables in the path integral. This is not a problem as the value of the reduced theory action on a classical
solution is not necessarily an observable that one may be interested in on the string theory side.
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In appendix A we will summarize some definitions and notation related to PSU(2, 2|4)

supergroup and discuss decompositions of the corresponding superalgebra. In appendix B
we shall relate the parametrization of the supercoset PSU(2,2|4)

Sp(2, 2)×Sp(4)
to standard embedding

coordinates in AdS5 × S5. In appendix C we shall discuss some special cases of string
solutions localized in the AdS2 × S2 part of AdS5 × S5 and the corresponding fluctuation
equations in the reduced theory. Appendix D will contain a brief discussion of reduced theory
counterparts of simple homogeneous string solutions. In appendix E we shall discuss an
alternative way of computing the bosonic fluctuation frequencies in the reduced theory, using
as an example the homogeneous solution discussed in section 4.3.1.

2. Review of the Pohlmeyer reduction of the AdS5 × S5 superstring

In this section we shall give a brief summary of the classical Pohlmeyer reduction for Type
IIB superstring theory on AdS5 × S5 that follows [1].

We start with the 2D world-sheet sigma model arising from the Green–Schwarz action
for the Type IIB superstring theory on AdS5 × S5 after fixing the conformal gauge. This
is the F/G coset sigma model where F = PSU(2, 2|4) and G = Sp(2, 2) × Sp(4) (see
appendix A); we will henceforth call this sigma model the conformal-gauge string theory.

Let us consider the field f ∈ PSU(2, 2|4) and define the left-invariant current
J = f −1df . Under the Z4 decomposition discussed in appendix A the current can be
written as follows:

J = f −1df = A + Q1 + P + Q2,A ∈ g, Q1 ∈ f1, P ∈ p, Q2 ∈ f3. (2.1)

The GS action in the conformal gauge is then

LGS = STr
[
P+P− + 1

2 (Q1+Q2− − Q1−Q2+)
]
, (2.2)

where ∂± = ∂τ ± ∂σ . We also need to impose the conformal-gauge (Virasoro) constraints,

STr(P±P±) = 0. (2.3)

This system has a G gauge symmetry under which,

f → fg ⇒ J → g−1Jg + g−1dg,

⇒ P → g−1Pg, A → g−1Ag + g−1dg, (2.4)

Q1 → g−1Q1g, Q2 → g−1Q2g.

The equations of motion of the conformal-gauge string theory, obtained by varying f in
(2.2), are

∂+P− + [A+, P−] + [Q2+,Q2−] = 0,

∂−P+ + [A−, P+] + [Q1−,Q1+] = 0,

[P+,Q1−] = 0, [P−,Q2+] = 0.

(2.5)

Interpreted as equations for the current components they should be supplemented by the
Maurer–Cartan equation

∂−J+ − ∂+J− + [J−, J+] = 0. (2.6)

Under the Z4 decomposition the Maurer–Cartan equation (2.6) takes the form
∂−P+ − ∂+P− + [A−, P+] + [Q1−,Q1+] + [P−,A+] + [Q2−,Q2+] = 0,

∂−A+ − ∂+A− + [A−,A+] + [Q1−,Q2+] + [P−, P+] + [Q2−,Q1+] = 0,

∂−Q1+ − ∂+Q1− + [A−,Q1+] + [Q1−,A+] + [P−,Q2+] + [Q2−, P+] = 0,

∂−Q2+ − ∂+Q2− + [A−,Q2+] + [Q1−, P+] + [P−,Q1+] + [Q2−,A+] = 0.

(2.7)

Here the first equation is automatically satisfied on the equations of motion (2.5).
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The Pohlmeyer reduction procedure involves solving the equations of motion and the
Virasoro constraints by introducing new variables parametrizing the physical degrees of
freedom. The equations of motion of the reduced theory are then the final three equations in
the decomposed Maurer–Cartan equation (2.7).

Let us briefly describe this reduction (for more details see section 6 of [1]). The polar
decomposition theorem implies first that we can always use a G gauge transformation to set

P+ = p1+T1 + p2+T2, (2.8)

and second write P− as follows

P− = p1−g−1T1g + p2−g−1T2g, (2.9)

where g is some element of G = Sp(2, 2) × Sp(4) and p1± and p2± are functions of the
world-sheet coordinates. T1 and T2 can be chosen as follows

T1 = i

2
diag(1, 1,−1,−1, 0, 0, 0, 0),

T2 = i

2
diag(0, 0, 0, 0, 1, 1,−1,−1).

(2.10)

These two elements span the maximal Abelian subalgebra of p. To solve the Virasoro
constraints we may then choose p+ = p1+ = p2+ and similarly, p− = p1− = p2−. Thus

P+ = p+T , P− = p−g−1T g, (2.11)

where T is defined as follows

T = i

2
diag(1, 1,−1,−1, 1, 1,−1,−1). (2.12)

T is an element of the maximal Abelian subalgebra of p. The group H is then defined as the
subgroup of G which stabilizes T, that is [h, T ] = 0, h ∈ H .

One way of fixing the κ-symmetry gauge is to project the fermionic currents onto the
‘parallel space’ (A.14) (see appendix A), i.e.

Q1 = Q
‖
1, gQ2g

−1 = (gQ2g
−1)‖. (2.13)

Substituting this into the fermionic equations of motion and noting that [T , f
‖
1,3] = 2T f

‖
1,3, it

is possible to see that solving the resulting equations implies

Q1− = Q2+ = 0. (2.14)

The equations of motion (2.5) then become

∂+P− + [A+, P−] = 0,

∂−P+ + [A−, P+] = 0.
(2.15)

Using the residual conformal diffeomorphism symmetry it is always possible to set p± = μ± =
const, so that we obtain

P+ = μ+T , P− = μ−g−1T g. (2.16)

It should be noted that if the sigma model were defined on 2D Minkowski space then we could
use a Lorentz transformation to set μ+ = μ− = μ as was done in [1] (and originally assumed
in [5]). However, if we are interested in the case of the closed string when the world-sheet is
R × S1 then this is not possible. It will be useful to define the following combination of μ+

and μ−,

μ = √
μ+μ−. (2.17)

The equations of motion (2.15) can be solved as follows

A+ = g−1∂+g + g−1 + g−1A+g, A− = A−. (2.18)

5
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Here A+ and A− are arbitrary fields taking values in the algebra h of H, i.e. [A±, T ] = 0.
Finally, we make the following redefinitions of the non-vanishing fermionic fields

�R = 1√
μ+

(Q1+)
‖, �L = 1√

μ−
(gQ2−g−1)‖. (2.19)

2.1. Equations of motion and Lagrangian of reduced theory

The equations of motion (2.5) and the Virasoro constraints (2.3) have been solved by writing
the original currents in terms of a new set of fields, (g ,A±, �R, �L), describing only the
physical degrees of freedom of the system. Substituting these into the second, third and fourth
equations in (2.7) we get the following set of equations of motion for the reduced theory

∂−(g−1∂+g + g−1A+g) − ∂+A− + [A−, g−1∂+g + g−1A+g]
= −μ2[g−1T g, T ] − μ[g−1�Lg,�R],

D−�R = μ[T , g−1�Lg], D+�L = μ[T , g�Rg−1], D± = ∂± + [A±, ].
(2.20)

These equations naturally have H × H gauge symmetry,

g → h−1gh̄, A+ → h−1A+h + h−1∂+h, A− → h̄−1A−h̄ + h̄−1∂−h̄

�R → h̄−1�Rh̄, �L → h−1�Lh.
(2.21)

The factor of H that corresponds to acting from the right on g arises as a subgroup from
the original G gauge freedom in the conformal-gauge string theory. The reason is that once
P+ has been rotated to be proportional to T, it is still possible to perform further G gauge
transformations retaining this structure, as long as g ∈ H . The other factor of H, which
corresponds to acting from the left on g arises because in defining the reduced theory field
g, there is an ambiguity: it is possible to let g → hg, where h is an arbitrary element of H,
without changing that P− is proportional to g−1T g. Both of these gauge freedoms come about
because H is the stabilizer of T (i.e., [h, T ] = 0 for h ∈ H ).

To be able to write a sensible Lagrangian which leads to the equations of motion (2.20)
we need to partially fix the H × H gauge symmetry to a H gauge symmetry. We can do this
by demanding that

τ(A+) = (
g−1∂+g + g−1A+g − 1

2 [[T ,�R], �R]
)
h
,

τ−1(A−) = (−∂−gg−1 + gA−g−1 − 1
2 [[T ,�L], �L]

)
h
.

(2.22)

Here τ (not to be confused with a time-like world-sheet coordinate) is a supertrace-preserving5

automorphism of the algebra h. As discussed in [1], this partial gauge fixing is always
possible6. The gauge symmetry is now reduced to the following asymmetric H gauge
symmetry,

g → h−1gτ̂ (h), A+ → h−1A+h + h−1∂+h, A− → τ̂ (h)−1A−τ̂ (h) + τ̂ (h)−1∂−τ̂ (h)

�R → τ̂ (h)−1�Rτ̂ (h), �L → h−1�Lh, (2.23)

where τ̂ is a lift of τ from h to H.
The equations of motion (2.20) and the gauge constraints (2.22) then follow from the

following Lagrangian7,

Ltot = LgWZW + μ2 STr(g−1T gT ) + 1
2 STr(�L[T ,D+�L]

+ �R[T ,D−�R]) + μ STr(g−1�Lg�R), (2.24)

5 STr(τ (u1)τ (u2)) = STr(u1u2), u1,2 ∈ h.
6 Compared to [1], we choose to redefine A− → τ−1(A−).
7 The overall coefficient in the reduced theory action should be the same string tension that appears in the AdS5 ×S5

string action.
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where LgWZW is the Lagrangian of the asymmetrically gauged G/H WZW model,

IgWZW =
∫

d2σ

4π
STr(g−1∂+gg−1∂−g) −

∫
d3σ

12π
STr(g−1dgg−1dgg−1dg)

+
∫

d2σ

2π
STr(A+ ∂−gg−1 − A− g−1∂+g − g−1A+gA− + τ(A+)A−) . (2.25)

This Lagrangian is invariant under the gauge transformations (2.23) as expected.
The reduced theory is thus the G/H asymmetrically gauged WZW model with a gauge-

invariant integrable potential and fermionic extension. For the case of the superstring on
AdS5 × S5 we have G = Sp(2, 2) × Sp(4) and H = [SU(2)]4. The embedding of these
subgroups into PSU(2, 2|4) that we use is discussed in appendix A.

Let us stress that the equations of motion (2.20) obtained directly from string theory
equations after solving the Virasoro conditions in terms of new current variables do not
‘know’ about the τ -automorphism. Thus the information contained in (2.24) with (2.25) that
is relevant for string theory should also not depend on τ . However, it is not clear a priori
(and seems unlikely) that the reduced theory actions with different choices of τ are completely
equivalent as 2D quantum field theories.

In the sections 3 and 4 we shall consider the case of the symmetric gauge fixing when the
automorphism τ is trivial, i.e. the reduced theory Lagrangian is given by (2.24), (2.25) with
τ = 1.

2.2. Vacua of the reduced theory

The vacua of the reduced theory may be defined as constant solutions which minimize the
potential −μ2 STr(g−1T gT ) in (2.24). These are then

gvac = h0 ∈ H, h0 = const. (2.26)

Back in string theory all these vacua are equivalent to the BMN vacuum. As discussed above,
when carrying out the reduction we initially have the equations (2.20) with H × H gauge
symmetry, (2.21). We then use some of this gauge symmetry to fix the gauge fields as in
(2.22).

Before this partial gauge fixing it is always possible to choose the vacuum in the equations
(2.20) to be the identity, g = 1: choices of gvac = h0 ∈ H are gauge equivalent. After the
gauge fixing needed to get a Lagrangian set of equations of motion this is no longer so: we
get a space of vacua (2.26) that are not related by the residual H gauge transformations. Still,
they should be effectively equivalent as far as the information relevant for string theory is
concerned.

Let us emphasize that ultimately we are interested in observables of the string theory. We
are only interested in observables of the reduced theory in the sense of what they say about
the observables in the string theory. At the level of the equations of motion (i.e., classically)
it is clear that the latter should not depend on a particular H × H → H gauge fixing. As the
one-loop corrections are essentially determined by the equations of motion, this should also
be true at the one-loop level (and should hopefully be true in general).

It is useful to note that expanding the reduced theory action near different vacua is related
to using different partial gauge-fixings or different choices of τ in (2.22). Indeed, it is easy to
see that starting with the action (2.25) with τ = 1 and expanding it near g = h0 is equivalent
to starting with (2.25) with the special choice of the automorphism τ(u) = h−1

0 uh0 and
expanding it near g = 1.

As was mentioned in [1], there is an apparent problem with expanding the symmetrically
gauged (τ = 1) action (2.24) near the trivial vacuum, gvac = 1: the A+A− − g−1A+gA− part

7
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of the action (2.25) is then degenerate. This complication may be by-passed by exploiting the
freedom to choose a different gauging or a different vacuum in (2.26) to expand around. For
example, one may expand the symmetrically gauged model near

gvac =

⎛
⎜⎜⎝

iσi 02 02 02

02 iσj 02 02

02 02 iσk 02

02 02 02 iσl

⎞
⎟⎟⎠ , (2.27)

which is a constant matrix in H = [SU(2)]4. Here σ1,2,3 are the Pauli matrices and i, j, k, l

can take any values 1, 2, 3. It should be noted that these choices are all related to each other
by symmetric H gauge transformations, but are not equivalent to gvac = 1. Expanding near
this vacuum (combined with an appropriate H gauge fixing) then removes the degeneracy.
This observation may be useful for a future study of the S-matrix of the reduced theory.

If we start with the symmetrically gauged WZW model we may parametrize g in terms of
eight bosonic scalar fields (after H gauge fixing).8 We should do this so that when these fields
all vanish we are left with gvac = h0, for constant h0 ∈ H (this includes gvac = 1 and also gvac

as given in (2.27)). At the level of the equations of motion (2.20) these choices are all related
by H × H gauge transformations, but not by symmetric H gauge transformations. Therefore,
there will be many solutions of the symmetrically gauged WZW model, which are not related
by H gauge transformations, but which correspond to the same classical string solution (as
they are related by a H ×H gauge transformation, ignoring the gauge constraints). They may
be distinguished by the vacuum they approach in the limit when the string solution shrinks to
a point.

In most of this paper we will always look for classical solutions of the reduced theory
such that they are solutions of the symmetrically gauged WZW model and have a vacuum
limit that is related by a H gauge transformation to (2.27).9

3. Fluctuations near classical solution from string theory equations of motion

In this section we shall discuss fluctuations of the conformal-gauge string theory around
classical string solutions at the level of the equations of motion. The underlying motivation is
to compare one-loop quantum corrections in string theory and the reduced theory. Since the
classical equations of the reduced theory are closely related to the original conformal-gauge
string equations (and their classical solutions are in direct correspondence) the fluctuation
spectra near the respective solutions should also be closely related.

As discussed above, the string theory equations can be written in terms of the current
components built out of the field f ∈ PSU(2, 2|4). Rather than fluctuating the currents
directly here we will first fluctuate f and then consider how this affects the equations of
motion and the Maurer–Cartan equations for the currents.

It is possible to parametrize f in terms of fields that can be viewed as coordinates on
AdS5 × S5. The parametrization that we use is discussed in appendix B. Thus fluctuating f

is equivalent to fluctuating these embedding coordinates. It is still advantageous to write the

8 Below we will not explicitly relate g to string coordinates (we will always embed the string coordinates into f and
compute g following the procedure outlined in section 2).
9 In appendix D we will consider the complex sine-Gordon and complex sinh-Gordon models as truncated reduced
theory models corresponding to the bosonic part of superstring theory on AdS3 × S3. When considering these
models we have already implicitly chosen a particular parametrization of g in terms of scalar fields, or, equivalently,
a particular embedding of the string coordinates in g. This parametrization is different from the one used in the rest
of the paper.

8
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classical equations of motion in terms of the currents as then the resulting fluctuation equations
retain the algebra structure.

One may use the Pohlmeyer reduction to simplify the fluctuations of the conformal-gauge
string theory. Starting with a classical solution of the reduced theory, if we are interested in
the fluctuation spectrum we do not need to reconstruct the corresponding classical form of
f : we need only to know the corresponding classical string theory currents. We can then
substitute the reconstructed currents into the fluctuation equations of the conformal-gauge
string theory.

This simplifies the fluctuation equations because in the Pohlmeyer reduction the G gauge
freedom of the conformal-gauge string theory is used to rotate P+ such that it is proportional
to T (see section 2). In terms of the embedding coordinates on AdS5 × S5, this is equivalent
to choosing the coordinate system such that one of the directions of the world-sheet always
lies in a particular direction. The massless fluctuations, which are removed via the Virasoro
constraints, are the two fluctuations in the directions along the world-sheet, while the physical
fluctuations are those transverse to the world-sheet. Since the Virasoro constraints are already
solved in the reduced theory it turns out to be much easier to isolate the physical fluctuations.

Below we shall study in detail a general class of classical solutions living in an AdS2 ×S2

subspace of AdS5 × S5 and consider the functional determinants of the operators acting on
the physical fluctuations10. For some special solutions we will see that the results will agree
with the previously found ones, such as for fluctuations near the giant magnon solution [33].

The Lagrangian and the equations of motion for the conformal-gauge string theory
are given in (2.2) and (2.5), respectively. We start with a classical solution f 0 (with the
corresponding current J0 = A0 + Q1 0 + P0 + Q2 0), and set

f = f0e
ξ , ξ ∈ psu(2, 2|4). (3.1)

This should then be substituted into the classical equations of motion (2.5) and the Virasoro
constraints (2.3). The resulting equations are then expanded to first order in the fluctuation
field ξ . Since

J = f −1 df = f −1
0 df0 +

[
f −1

0 df0, ξ
]

+ dξ + O(ξ 2) +

= J0 + [J0, ξ ] + dξ + O(ξ 2) (3.2)

is flat, dJ + J ∧ J = 0, the fluctuation equations arising from the Maurer–Cartan equations
will be satisfied automatically.

We can split the fluctuation field ξ under the Z4 decomposition

ξ = ξ0 + ξ1 + ξ2 + ξ3. (3.3)

Under the Z4 grading J decomposes as follows to first order in ξ ,

A = A0 + [A0, ξ0] + [Q10, ξ3] + [P0, ξ2] + [Q20, ξ1] + dξ0

= A0 + δA,

P = P0 + [A0, ξ2] + [Q10, ξ1] + [P0, ξ0] + [Q20, ξ3] + dξ2

= P0 + δP,

Q1 = Q10 + [A0, ξ1] + [Q10, ξ0] + [P0, ξ3] + [Q20, ξ2] + dξ1

= Q10 + δQ1,

Q2 = Q20 + [A0, ξ3] + [Q1,0, ξ2] + [P0, ξ1] + [Q20, ξ0] + dξ3

= Q20 + δQ2.

(3.4)

10 Note that here while we only consider classical solutions living in AdS2 × S2 we fluctuate the canonical field f in
all directions, including the fermionic directions.
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Substituting these relations back into (2.5) gives the equations of motion for the fluctuations
ξ . These need to be supplemented by the equations which arise from substituting (3.4) back
into the Virasoro conditions (2.3) which will give the constraint equations which remove the
two massless ‘longitudinal’ bosonic fluctuations.

3.1. Fluctuations of string equations around a classical solution of the reduced theory

The aim of this section is to determine the fluctuations around a classical solution of the
conformal-gauge string theory corresponding to a solution of the reduced theory. Again,
the eventual goal is to show the equivalence between the fluctuation spectrum and thus the
one-loop corrections in string theory and in the reduced theory in (cf section 4).

The strategy is to start with a classical solution of the reduced theory and then reconstruct
the classical currents of the conformal-gauge string theory. As already mentioned, we do not
need to reconstruct the full classical solution of the conformal-gauge string theory, f 0. Given
a classical solution of the reduced theory g0, A±0, �R0, �L0, the reconstructed currents of the
string theory solution are as follows

P0+ = μ+T , P0− = μ−g−1
0 T g0,

A0+ = g−1
0 ∂+g0 + g−1A+0g0, A0− = A−0,

Q10+ = √
μ+�R0, Q10− = 0,

Q20+ = 0, Q20− = √
μ−g−1

0 �L0g0.

(3.5)

Motivated by the comparison to the reduced theory let us make the following redefinitions of
the fermionic components of ξ

ξ̂1 = ξ1√
μ−

, ξ̂3 = −g0ξ3g
−1
0√

μ+
. (3.6)

We then fix the κ-symmetry gauge by choosing ξ̂1 = ξ̂
‖
1 and ξ̂3 = ξ̂

‖
3 .

Substituting these formulae into (2.5) and (2.3) gives the equations of motion and
constraint equations for the fluctuations. Here we will give these equations for the fluctuations
with vanishing classical fermionic content, i.e. Q1 0 = Q2 0 = �R0 = �L0 = 0. We will
also assume that the classical solution of the reduced theory has vanishing gauge fields, that is
A±0 = 0. It is possible to see that using the H gauge freedom and the fact that the current A0

is flat,11 it is always possible to choose the classical solution of the reduced theory equations
(2.20) such that A±0 = 0. The fluctuation equations are then

∂+∂−ξ2 + ∂−
[
g−1

0 ∂+g0, ξ2
]

+ μ2
[[

g−1
0 T g0, ξ2

]
, T

] = 0,

∂−ξ̂1 + μ[T , [T , g−1
0 T , ξ̂3]g0]] = 0,

∂+ξ̂3 + μ[T , [T , g−1
0 [T , ξ̂3g0]] = 0,

(3.7)

STr
(
T

([
g−1

0 ∂+g0, ξ2
]

+ ∂+ξ2
)) = 0,

STr
(
g−1

0 T g0∂−ξ2
) = 0.

(3.8)

Here we have used that T 2 = − 1
4 18 and the cyclicity of the supertrace to simplify the

fluctuations of the Virasoro constraints.

11 The flatness of A0 comes from the equations of motion and thus implies that this is a statement that can only be
made on-shell.
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3.2. Special case: solutions in AdS2 × S2 subspace of AdS5 × S5

Let us consider a particular case of the classical string solutions in a AdS2 × S2 subspace
of AdS5 × S5 and the corresponding classical solutions in the reduced theory (see also
appendix B.1 for details). We will see that the resulting functional determinants, which
determine the one-loop corrections, match the corresponding functional determinants in the
reduced theory computed in section 4.2.

There are many interesting string solutions which live in AdS2 ×S2, and using the results
of this section it may be possible to better understand the one-loop corrections to their energies.
The simplest are the ones that effectively live in Rt × S1, that is the point-like orbiting string
(i.e., the geodesic corresponding to the BMN vacuum state) and the (unstable) static string
wrapped on a big circle of S5. There are no homogeneous string solutions in AdS2 × S2

apart from these two special cases, but there are many other simple configurations: pulsating
strings, folded strings and finite-size magnons (see [34, 35, 14, 12, 13] and references therein).
One of the limits of the finite-size magnon is the giant magnon [10], for which the one-loop
correction was shown to vanish [33]. We shall compare our results against the expressions in
this paper in appendix C and show that they agree.

As discussed in appendix B.1, for the bosonic solutions in AdS2 ×S2 we can consider the
following element of G as the field used to parametrize P− in the reduction procedure (2.11)

g0 =
(

gA 04

04 gS

)
, (3.9)

gA =

⎛
⎜⎜⎝

i cosh φA 0 0 sinh φA

0 −i cosh φA sinh φA 0
0 sinh φA i cosh φA 0

sinh φA 0 0 −i cosh φA

⎞
⎟⎟⎠ ,

gS =

⎛
⎜⎜⎝

i cos φS 0 0 i sin φS

0 −i cos φS i sin φS 0
0 i sin φS i cos φS 0

i sin φS 0 0 −i cos φS

⎞
⎟⎟⎠ ,

where φA and φS satisfy

∂+∂−φA +
μ2

2
sinh 2φA = 0, ∂+∂−φS +

μ2

2
sin 2φS = 0. (3.10)

For this configuration A±0 = �R0 = �L0 = 0 (see appendix B.1). It should be noted
that as g−1

0 ∂+g0 ∈ m and ∂−g0g
−1
0 ∈ m (as defined in appendix A), A±0 = 0 is a consistent

solution for the gauge fields. This configuration satisfies the classical equations of motion
of the reduced theory, provided φA and φS satisfy the above sinh-Gordon and sine-Gordon
equations.

3.2.1. Fluctuations near AdS2 × S2 solution in string theory. The fluctuations around
the corresponding solution in the conformal-gauge string theory can be found following the
method in section 3.1. That is, we start from the reduced theory classical solution, reconstruct
the classical currents of the string theory, and substitute these into the equations of motion for
the fluctuations of the field f .

Substituting (3.9) into (3.7) and considering the components of the resulting matrix
equations the following fluctuation equations arise. In the bosonic AdS5 sector we obtain

∂+∂−zi + μ2 cosh 2φA zi ≡ O1 zi = 0, i = 1, 2, 3 (3.11)

11
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and one copy of the following set of coupled equations

∂+∂−z4 + μ2 cosh 2φA z4 − 2∂+φA∂−z5 = 0, (3.12)

∂−(∂+z5 − 2∂+φAz4) = 0. (3.13)

Here z1, z2, z3, z4, z5 are the five components of ξ2 in the AdS5 sector.
We still need to impose the constraints on the fluctuations arising from fluctuating the

Virasoro constraints (3.8). For the present configuration the AdS5 and S5 sectors are decoupled
and thus in the Virasoro constraints we can split up the supertrace into traces over the two
sectors and demand that they both vanish separately. The following constraints then arise for
the fluctuations in the AdS5 sector,

∂+z5 − 2∂+φAz4 = 0, ∂−z5 − tanh 2φA∂−z4 = 0. (3.14)

It is possible to see that both (3.12) and (3.13) are implied by (3.14). This coupled first-order
system is equivalent to the second-order system, obtained by eliminating z4 or z5. Thus the
relevant fluctuation operator can be found by either eliminating z4 or z5 from (3.14) or by
just considering the coupled first-order operator. These should lead to the same functional
determinant.

Here we choose to eliminate z5, resulting in the following equation for the fourth physical
bosonic fluctuation z4 in the AdS5 sector (the other three are given by (3.11))

∂+∂−z4 + μ2 cosh 2φA z4 − 2 tanh 2φA∂+φA∂−z4 ≡ O2 z4 = 0. (3.15)

Let us show that the determinants of the two operators,

O1 = ∂+∂− + μ2 cosh 2φA (3.16)

and

O2 = ∂+∂− + μ2 cosh 2φA − 2 tanh 2φA∂+φA∂− (3.17)

are equal. Defining

VA ≡ μ2 cosh 2φA, (3.18)

we have

O1 = ∂+∂− + VA and O2 = (VA∂+)
(
V −1

A ∂−
)

+ VA. (3.19)

Considering the product(
VA 0
0 V −1

A

) (
∂+ −1
VA ∂−

)
=

(
VA∂+ −VA

1 V −1
A ∂−

)
(3.20)

and taking the determinant12 on both sides we immediately see that

detO1 = detO2. (3.21)

Therefore, the contribution of the AdS5 sector to the one-loop correction is given by the
four copies of the determinant of O1, i.e.

4 ln det(∂+∂− + μ2 cosh 2φA). (3.22)

In the bosonic S5 sector the story is the same, with VA → VS = μ2 cos 2φS . The contribution
of this sector is then given by

4 ln det(∂+∂− + μ2 cos 2φS). (3.23)

12 For a matrix of operators we have det
(
A B
C D

) = det(AD − ACA−1B) = det(DA − CA−1BA).
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For the fermionic fluctuations we get the following sets of coupled equations

∂−ϑi + μ cos φS cosh φAϑ ′
i + μ sin φS sinh φAϑ ′

i+1 = 0,

∂+ϑ
′
i − μ cos φS cosh φAϑi + μ sin φS sinh φAϑi+1 = 0, i = 1, 3, 5, 7

∂−ϑi+1 + μ cos φS cosh φAϑ ′
i+1 − μ sin φS sinh φAϑ ′

i = 0,

∂+ϑ
′
i+1 − μ cos φS cosh φAϑi+1 − μ sin φS sinh φAϑi = 0.

(3.24)

Here the anticommuting functions ϑk are components of ξ̂1 ∈ f
‖
1 and ϑ ′

k are components of
ξ̂3 ∈ f

‖
3. The 16 coupled first-order equations can be rearranged into eight coupled second-order

equations describing the expected eight fermionic degrees of freedom.
In appendix C the results of this section are applied to the case of the giant magnon

classical solution [10] and shown to agree with [33], where the one-loop correction to the
energy was computed by fluctuating the embedding coordinates.

3.2.2. Solutions in Rt × S1. There are two special string solutions that live in Rt × S1 with
Rt from AdS5 and S1 from S5. These are (i) the (supersymmetric) point-like orbiting string,
t = κτ, θ = κτ , and (ii) the (unstable) static wound closed string, t = kτ, θ = kσ, k ∈ Z
(k is the winding number). Here t and θ are the coordinates in AdS5 and S5 as defined in
appendix B.

The reduced theory solutions corresponding to these two string solutions are the constant
solutions of the sinh-Gordon and sine-Gordon equations. For the sinh-Gordon one the only
constant solution is φA = 0. For the sine-Gordon equation the constant solutions are φS = nπ

2 ,
n ∈ Z. These break down into two distinct types, either φS = nπ or φS = nπ + π

2 , which
correspond to minima and maxima of the potential, μ2 cos 2φS ; these lead to stable and
unstable solutions, respectively.

The reduced theory solution φA = φS = 0 gives the point-like string in Rt × S1 in string
theory, with μ = κ . Thus a stable vacuum solution of the reduced theory corresponds to the
stable BMN vacuum solution of the conformal-gauge string theory. The bosonic and fermionic
fluctuation equations are then the familiar one

∂+∂−ζi + μ2ζi = 0, i = 1, . . . , 8. (3.25)

∂+∂−ϑi + μ2ϑi = 0, i = 1, . . . , 8. (3.26)

For the static string wrapped on S1 in S5 the corresponding reduced theory solution is
φA = 0, φS = π

2 , with μ = k. As expected, an unstable solution in the reduced theory
gives rise to an unstable solution in string theory. The bosonic AdS5 and S5 fluctuation
equations are respectively

∂+∂−ζi + μ2ζi = 0, i = 1, . . . , 4. (3.27)

∂+∂−ζi − μ2ζi = 0, i = 5, . . . , 8. (3.28)

The fermionic fluctuation equations are

∂+∂−ϑi = 0, i = 1, . . . , 8. (3.29)

For both the above solutions the fluctuation spectra computed in the reduced theory and
directly in the string theory (using, e.g., the embedding coordinates) match, and thus the
one-loop partition functions also match, providing a simple check of our general claim.
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4. Fluctuations near a classical solution from the action of the reduced theory

In this section we will investigate the quadratic fluctuations in the reduced theory action
expanded around classical solutions. Again, the aim is to see whether the sum of logarithms of
the functional determinants which gives the one-loop partition function of the reduced theory
is the same as in the conformal-gauge string theory expanded near the corresponding solution.

While we will not prove in general that the one-loop partition functions match, we shall
demonstrate the equivalence for certain classes of classical solutions. These include solutions
which live in an AdS2 × S2 subspace of AdS5 × S5 and also homogeneous solutions of the
conformal-gauge string theory.

We shall parametrize the basic variable of the reduced theory g ∈ G as follows

g = g0e
η, η ∈ g, (4.1)

where η is the fluctuation field.
Under the Z2 decomposition discussed in appendix A we have η = η‖ +η⊥ where η‖ ∈ m

and η⊥ ∈ h. As the physical bosonic fluctuations should be those corresponding to the coset
G/H part, we will take them to be the components of η‖.13 As expected, there are eight
independent components of the bosonic fluctuation field η‖.

The fields η⊥ and the fluctuations of the gauge fields, δA± ∈ h, will, in general, be
coupled to η‖. To isolate the physical fluctuations the H gauge needs to be fixed. We will
always choose to fix the gauge on η⊥ and δA±, understanding that the components of η‖

should be the physical fluctuations.
An evidence that the components of η‖ are the physical fluctuations is that in the quadratic

fluctuation Lagrangian (4.3), the kinetic term is given by

STr(∂+η∂−η) = STr(∂+η
‖∂−η‖) + STr(∂+η

⊥∂−η⊥).

Expressing η in terms of the component fields gives kinetic terms with the correct sign for the
fields in η‖, but the wrong sign for the some of the fields in η⊥.

It should be noted that under the H gauge transformations we have

η → h−1ηh ⇒ η‖ → h−1η‖h, η⊥ → h−1η⊥h.

Therefore, the components of η‖ and η⊥ cannot mix under these transformations.

4.1. Expansion of the reduced theory action

The reduced theory action found in [1, 2] is a particular fermionic extension of the G/H

left–right symmetrically gauged WZW model with a H gauge invariant integrable potential
(for its detailed discussion see also [4]). In the case of the AdS5 × S5 superstring we
have G = Sp(2, 2) × Sp(4) and H = [SU(2)]4. The embedding of these subgroups into
PSU(2, 2|4) that we use is discussed in appendix A. The Lagrangian and the equations of
motion for this theory were given in (2.24) and (2.20), respectively.

We consider the fluctuations around a classical solution, g0, A±0, �R0, �L0, as follows

g = g0e
η = g0

(
1 + η + 1

2η2 + O(η3)
)
,

A+ = A+0 + δA+, A− = A−0 + δA−,

�R = �R0 + δ�R, �L = �L0 + δ�L.

(4.2)

13 One may think of these fluctuations as corresponding to Cartesian coordinates (as opposed to radii and angles), cf
(4.7).
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Below we will only consider classical solutions with a vanishing fermionic content, i.e. �R0

and �L0 will be set to zero. The quadratic fluctuation part of the Lagrangian (2.24) is then

Lquad = STr
[

1
2∂+η∂−η + 1

2 (η∂−η − ∂−ηη)g−1
0 ∂+g0 + δA+g0∂−ηg−1

0 − 1
2A+0g0∂−ηηg−1

0

+ 1
2A+0g0η∂−ηg−1

0 + δA−ηg−1
0 ∂+g0 − δA−g−1

0 ∂+g0η − δA−∂+η + A−0ηg−1
0 ∂+g0η

+ 1
2A−0η∂+η − 1

2A−0η
2g−1

0 ∂+g0 − 1
2A−0g

−1
0 ∂+g0η

2 − 1
2A−0∂+ηη + δA+δA−

− 1
2η2g−1

0 A+0gA−0 − 1
2g−1

0 A+0g0η
2A−0 + ηg−1

0 δA+g0A−0 + ηg−1
0 A+0g0ηA−0

+ ηg−1
0 A+0g0δA− − g−1

0 δA+g0ηA−0 − g−1
0 δA+g0δA− − g−1

0 A+0g0ηδA−
+ μ2( 1

2η2g−1
0 T g0T + 1

2g−1
0 T g0η

2T − ηg−1
0 T g0ηT

)
+ 1

2δ�R[T ,∂−δ�R

+ [A−0,δ�R]] + 1
2δ�L[T ,∂+δ�L + [A+0,δ�L]] + μg−1

0 δ�Lg0δ�R

]
. (4.3)

For �R,L0 = 0 the bosonic and fermionic fluctuations decouple at quadratic order; the
fermionic sector describes only the physical fermionic degrees of freedom, that is the 16 real
anticommuting fields parametrizing δ�R and δ�L. Therefore, to determine the operator which
acts on the fermions, we can simply extract it from the equations of motion for the fermionic
fluctuations.

To isolate the physical bosonic fluctuations an H gauge needs to be fixed (or the unphysical
fluctuations integrated out). The H gauge symmetry acts as follows (see (2.23))

g0e
η = g → h−1gh = h−1g0heh−1ηh,

A±0 + δA± = A± → h−1A±h + h−1∂±h = h−1A±0h + h−1∂±h + h−1δA±h,

�R0 + δ�R = �R → h−1�Rh = h−1�R0h + h−1δ�Rh,

�L0 + δ�L = �L → h−1�Lh = h−1�L0h + h−1δ�Lh.

(4.4)

These relations determine the transformations of the fluctuation fields and allow us to fix an
H gauge.

4.2. Fluctuations near solutions in AdS2 × S2 subspace of AdS5 × S5

Let us consider the particular case of the expansion near the reduced theory solutions
corresponding to the string theory solutions in the AdS2 × S2 subspace of AdS5 × S5. As
discussed in appendix B.1, such reduced theory solutions can be parametrized as in (3.9) and
(3.10). To fix the H gauge let us first note that we can always write η⊥ and δA± as

η⊥ =

⎛
⎜⎜⎝

u1 + σ3u
∗
2σ3 02 02 02

02 u∗
1 − σ3u2σ3 02 02

02 02 u3 − σ3u4σ3 02

02 02 02 u∗
3 + σ3u

∗
4σ3

⎞
⎟⎟⎠ , σ3 =

(
1 0
0 −1

)
,

δA+ =

⎛
⎜⎜⎝

a1+ − a∗
2+ 02 02 02

02 a∗
1+ + a2+ 02 02

02 02 a3+ + a4+ 02

02 02 02 a∗
3+ − a∗

4+

⎞
⎟⎟⎠ ,

δA− =

⎛
⎜⎜⎝

a1− + σ3a∗
2−σ3 02 02 02

02 a∗
1− − σ3a2−σ3 02 02

02 02 a3− − σ3a4−σ3 02

02 02 02 a∗
3− + σ3a∗

4−σ3

⎞
⎟⎟⎠ .
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Here ui and ai±, (i = 1, 2, 3, 4), are all elements of su(2). The H gauge is then partially fixed
by choosing

(∂−u2 − a2−)∂+φA + 1
2∂−(a2+ sinh 2φA) = 0, (4.5)

(∂−u4 − a4−)∂+φS + 1
2∂−(a4+ sin 2φS) = 0. (4.6)

This H gauge choice fixes 6 of the 12degrees of freedom of the H gauge symmetry. The reason
for choosing this gauge is that when the classical solution and the gauge-fixing conditions are
substituted into the quadratic fluctuation Lagrangian (4.3), the physical fluctuation fields, η‖,
decouple from the remaining unphysical fluctuation fields.

Now that the physical fluctuations have been decoupled we should be able to use the
remaining H gauge symmetry to ensure that the sector of the Lagrangian containing the
unphysical bosonic fluctuations does not produce a non-trivial contribution.

We are then left with the decoupled physical bosonic fluctuations. We may introduce the
components of η‖ as follows

η‖ =
(

η
‖
A 0

0 η
‖
S

)
, (4.7)

ηA = 1√
2

⎛
⎜⎜⎝

0 0 ζ1 + iζ2 ζ3 + iζ4

0 0 ζ3 − iζ4 −ζ1 + iζ2

ζ1 − iζ2 ζ3 + iζ4 0 0
ζ3 − iζ4 −ζ1 − iζ2 0 0

⎞
⎟⎟⎠ ,

ηS = 1√
2

⎛
⎜⎜⎝

0 0 ζ5 + iζ6 ζ7 + iζ8

0 0 ζ7 − iζ8 −ζ5 + iζ6

ζ5 − iζ6 ζ7 + iζ8 0 0
ζ7 − iζ8 −ζ5 − iζ6 0 0

⎞
⎟⎟⎠ .

The corresponding part of the fluctuation Lagrangian is then

Lb = −
4∑

i=1

ζi(∂+∂− + μ2 cosh 2φA)ζi −
8∑

i=5

ζi(∂+∂− + μ2 cos 2φS)ζi . (4.8)

Then the resulting bosonic part of the one-loop partition function is given by

([det(∂+∂− + μ2 cosh 2φA) det(∂+∂− + μ2 cos 2φS)]
4)−1/2. (4.9)

This is the same result as was found for the fluctuations of the conformal-gauge string theory
around the classical solutions in the AdS2 × S2 subspace of AdS5 × S5 in section 3.2 (see
(3.22) and (3.23)).

As was already mentioned, to determine the fermionic fluctuation operator we may just
use the equations of motion arising from varying the quadratic fluctuation Lagrangian (4.3). It
is easy to see that these give the same operator as found for the conformal-gauge string theory
fermionic fluctuations, see (3.24).

We conclude that for the classical solutions of AdS5 × S5 string theory localized in
AdS2 × S2, the one-loop partition functions computed in the string theory and in the reduced
theory are the same.
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4.3. Homogeneous string solutions

Let us now consider another class of AdS5 × S5 string solutions—‘homogeneous solutions’
[23, 24, 26–28]—for which the string has a rigid shape and for which one can arrange to
have the coefficients in the quadratic fluctuation Lagrangian to be constant. In this case the
determinants of the operators which enter the one-loop partition function are expressed in
terms of the characteristic frequencies which are relatively simple to calculate and compare
between the conformal-gauge string theory and the reduced theory.

Our approach will be to start with a homogeneous solution of the conformal-gauge string
theory and construct the corresponding field f using the parametrization of PSU(2, 2|4) in
terms of the embedding coordinates as described in appendix B. Then the classical solution
of the reduced theory will be found following the reduction procedure outlined in section 2.
Since in the process of the reduction the natural H ×H gauge symmetry of the string equations
of motion is partially fixed to a H gauge symmetry, the solution of the reduced theory will
correspond to the string theory solution in this partial gauge.

We use the H gauge symmetry to choose the classical solution of the reduced theory such
that g−1

0 ∂±g0 and g−1
0 T g0 are constant. This is possible for the homogeneous solutions that

we consider below (and should be possible in general). The reason for choosing this gauge is
to help construct a Lagrangian for the physical fluctuations which has constant coefficients.

The quadratic fluctuation Lagrangian (4.3) can then be used to find the characteristic
frequencies of fluctuations around the reduced theory solution. We will see that is possible
to choose the H gauge on the fluctuations so that the coefficients in the quadratic fluctuation
Lagrangian for the eight bosonic and eight fermionic physical fluctuations are all constant. It
is then easy to compute the corresponding fluctuation frequencies. The resulting fluctuation
frequencies around the classical solutions of the reduced theory will be shown to match
the previously found frequencies of fluctuations around the homogeneous solutions in string
theory.

4.3.1. Homogeneous string solution in Rt × S3. One example of a simple string theory
solution we shall consider here is the rigid circular two-spin string on S3 in S5 discussed in
[23, 25, 27, 28]. Using the embedding coordinates in appendix B, i.e. YM (M = −1, 0, . . . , 4)

of R4,2 for the AdS5 part and XI (I = 1, 2, . . . , 6) of R6 for the S5 part, this bosonic string
solution is

Y0 + iY−1 = eiκτ , Y1 = Y2 = Y3 = Y4 = 0,

X1 + iX2 = 1√
2

eiωτ+imσ , X3 + iX4 = 1√
2

eiωτ−imσ , X5 = X6 = 0.
(4.10)

The Virasoro constraints imply that the three parameters, κ , ω and m, are related by

κ2 = m2 + ω2. (4.11)

Using the parametrizations discussed in appendix B we obtain the corresponding bosonic coset
element f ,

f =
(

fA 04

04 fS

)

17



J. Phys. A: Math. Theor. 42 (2009) 375204 B Hoare et al

fA =

⎛
⎜⎜⎝

e
iκτ
2 0 0 0

0 e
iκτ
2 0 0

0 0 e− iκτ
2 0

0 0 0 e− iκτ
2

⎞
⎟⎟⎠ ,

fS =

⎛
⎜⎜⎜⎜⎜⎝

1√
2

0 i
2 e−iωτ+imσ − i

2 e−iωτ−imσ

0 1√
2

i
2 eiωτ+imσ i

2 eiωτ−imσ

i
2 eiωτ−imσ i

2 e−iωτ−imσ 1√
2

0

− i
2 eiωτ+imσ i

2 e−iωτ+imσ 0 1√
2

⎞
⎟⎟⎟⎟⎟⎠ .

(4.12)

The corresponding solution of the reduced theory is14

g0 =
(

gA 04

04 gS

)
, v ≡ ei κ2−m2

κ
τ , (4.13)

gA =

⎛
⎜⎜⎝

i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

⎞
⎟⎟⎠ , gS =

⎛
⎜⎜⎝

0 ω
κ
v −im

κ
v 0

−ω
κ
v∗ 0 0 im

κ
v∗

im
κ
v 0 0 −ω

κ
v

0 −im
κ
v∗ ω

κ
v∗ 0

⎞
⎟⎟⎠ ,

A+0 =

⎛
⎜⎜⎜⎜⎜⎝

04 04

i
(

m2

κ
− κ

2

)
0 0 0

04 0 −i
(

m2

κ
− κ

2

)
0 0

0 0 i
(

m2

κ
− κ

2

)
0

0 0 0 −i
(

m2

κ
− κ

2

)

⎞
⎟⎟⎟⎟⎟⎠ , (4.14)

A−0 =

⎛
⎜⎜⎜⎜⎝

04 04

−i κ
2 0 0 0

04 0 i κ
2 0 0

0 0 −i κ
2 0

0 0 0 i κ
2

⎞
⎟⎟⎟⎟⎠ , �R0 = �L0 = 0. (4.15)

Note that the point-like string (BMN vacuum) solution is a particular case of (4.10), that is
when m = 0 and ω = κ . In the reduced theory the corresponding limit of (4.13) is a special
case of the vacuum in (2.27)15.

Since the classical fermionic fields vanish, the bosonic AdS5 sector, the bosonic S5 sector
and the fermionic sector all decouple at the level of the action and we can discuss them
separately.

Here the AdS5 part of g0 lives in H and is constant16. As discussed in section 2.2 this is
a vacuum solution of this sector. The resulting fluctuation Lagrangian in the bosonic AdS5

sector is

LA = STr
[

1
2∂+η∂−η − δA−∂+η + δA+g0∂−ηg−1

0 + δA+δA− − g−1
0 δA+g0δA−

+ κ2(ηηT 2 − ηT ηT )
]
. (4.16)

14 The μ parameter of the reduced theory here is identified as κ .
15 One may also consider a formally different embedding of the string solution (4.10) into the reduced theory for
which the point-like limit corresponds to the trivial vacuum g = 1. In this case the solution for g has σ instead of τ

dependence, see appendix D.
16 In the AdS5 case we shall assume that the field is just in the top left 4 × 4 matrix of the original (8 × 8) field and
similarly for the S5 case the field will be just in the bottom right 4 × 4 matrix.
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We partially fix the H gauge symmetry by setting the diagonal components of η⊥ to zero17.
After integrating out δA± the Lagrangian describing only the physical fluctuations is

LA = STr
[

1
2∂+η

‖∂−η‖ + κ2(η‖η‖T 2 − η‖T η‖T )
]
. (4.17)

Let us introduce the component fields of η‖ as

η‖ =

⎛
⎜⎜⎝

0 0 a1 + ia2 a3 + ia4

0 0 a3 − ia4 −a1 + ia2

a1 − ia2 a3 + ia4 0 0
a3 − ia4 −a1 − ia2 0 0

⎞
⎟⎟⎠ . (4.18)

Then (4.17) becomes

LA = 2
4∑

i=1

(
∂+ai∂−ai − κ2a2

i

)
, (4.19)

which describes four bosonic fluctuations with frequency
√

n2 + κ2, n ∈ Z.

Now let us consider the S5 sector. We introduce the following parametrization of η‖, η⊥

and δA±,

η‖ =

⎛
⎜⎜⎝

0 0 b1 + ib2 b3 + ib4

0 0 −b3 + ib4 b1 − ib2

−b1 + ib2 b3 + ib4 0 0
−b3 + ib4 −b1 − ib2 0 0

⎞
⎟⎟⎠ , (4.20)

η⊥ =

⎛
⎜⎜⎝

ih1 h2 + ih3 0 0
−h2 + ih3 −ih1 0 0

0 0 ih4 h5 + ih6

0 0 −h5 + ih6 −ih4

⎞
⎟⎟⎠ , (4.21)

δA+ =

⎛
⎜⎜⎝

ia+1 (a+2 + ia+3) v2 0 0
− (a+2 − ia+3) v∗2 −ia+1 0 0

0 0 ia+4 (a+5 + ia+6) v2

0 0 − (a+5 − ia+6) v∗2 −ia+4

⎞
⎟⎟⎠ ,

δA− =

⎛
⎜⎜⎝

ia−1 a−2 + ia−3 0 0
−a−2 + ia−3 −ia−1 0 0

0 0 ia−4 a−5 + ia−6

0 0 −a−5 + ia−6 −ia−4

⎞
⎟⎟⎠ .

(4.22)

When we substitute this into the bosonic part of the quadratic fluctuation Lagrangian (4.3),
the fields decouple into two smaller sectors. These are, first, a sector containing b3, b4 and
the diagonal components of η⊥, δA±, which has a Lagrangian with constant coefficients,
and second, a sector containing b1,b2 and the off-diagonal components of η⊥, δA±. The
coefficients in this sector have some τ dependence, arising from the δA+δA− term (v defined
in (4.13) depends on τ ).

If the gauge field fluctuations are integrated out first, we end up with a Lagrangian that
has τ -dependent coefficients. To avoid this complication, i.e. to construct an action containing
only physical fluctuations and having constant coefficients we choose the following partial
gauge fixing
h1 + h4 = const,
κ(a−2 − a−5) − κ2(h3 − h6) − ∂−(a+3 − a+6) − κ∂−(h2 − h5) = 0,

κ(a−3 + a−6) + κ2(h2 + h5) − ∂−(a+2 + a+5) − κ∂−(h3 + h6) = 0.

(4.23)

17 This is to completely remove the degeneracy of expanding around this vacuum.

19



J. Phys. A: Math. Theor. 42 (2009) 375204 B Hoare et al

Then we can easily integrate out the diagonal components of δA± to get a Lagrangian for b3

and b4 in the desired form. The second two gauge constraints are chosen to decouple b1 and
b2 from the unphysical fluctuations. By using the remaining gauge freedom we should be able
to ensure that the unphysical fields only give a trivial contribution to the partition function.

The resulting Lagrangian for this sector is then

LS = 2

[
4∑

i=1

∂−bi∂+bi +
2∑

i=1

(2m2 − κ2)b2
i + 4m2b2

4 + 2κ(b4∂+b3 + b4∂−b3)

]
. (4.24)

This Lagrangian describes two decoupled fluctuations, b1, b2, with frequencies√
n2 + κ2 − 2m2, n ∈ Z, (4.25)

and two coupled fluctuations, b3, b4, with frequencies√
n2 + 2κ2 − 2m2 ± 2

√
n2κ2 + (m2 − κ2)2, n ∈ Z. (4.26)

In appendix E we shall present an alternative way of computing these fluctuation frequencies
which does not involve the above gauge fixing (4.23).

The fermionic sector is described by

Lferm = STr
(

1
2δ�R[T ,∂−δ�R + [A0−,δ�R]]

+ 1
2δ�L[T ,∂+δ�L + [A0+,δ�L]] + κg−1

0 δ�Lg0δ�R

)
. (4.27)

To make coefficients in this Lagrangian constant we may rotate some of the fermionic fields to
cancel the contribution of g0 and g−1

0 in the ‘Yukawa’ interaction term. This can be achieved
by parametrizing the matrix components of δ�R and δ�L as follows

δ�R =
(

0 XR

YR 0

)
, δ�L =

(
0 XL

YL 0

)
, (4.28)

where

XR =

⎛
⎜⎜⎝

0 0 α1 + iα2 α3 + iα4

0 0 −α3 + iα4 α1 − iα2

α5 + iα6 α7 − iα8 0 0
α7 + iα8 −α5 + iα6 0 0

⎞
⎟⎟⎠ , (4.29)

YR =

⎛
⎜⎜⎝

0 0 −α6 − iα5 −α8 − iα7

0 0 α8 − iα7 −α6 + iα5

α2 + iα1 α4 − iα3 0 0
α4 + iα3 −α2 + iα1 0 0

⎞
⎟⎟⎠ , (4.30)

XL =

⎛
⎜⎜⎝

0 0 (β1 + iβ2)v
∗ (β3 + iβ4)v

0 0 (β3 − iβ4)v
∗ (−β1 + iβ2)v

(β5 + iβ6)v
∗ (−β7 + iβ8)v 0 0

(β7 + iβ8)v
∗ (β5 − iβ6)v 0 0

⎞
⎟⎟⎠ , (4.31)

YL =

⎛
⎜⎜⎝

0 0 (−β6 − iβ5)v (−β8 − iβ7)v

0 0 (−β8 + iβ7)v
∗ (β6 − iβ5)v

∗

(β2 + iβ1)v (−β4 + iβ3)v 0 0
(β4 + iβ3)v

∗ (β2 − iβ1)v
∗ 0 0

⎞
⎟⎟⎠ . (4.32)
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Here αk and βk are 8+8 real anti-commuting functions and v is defined in (4.13). The
Lagrangian (4.27) then takes the form

Lferm = 2

[ 8∑
i=1

(αi∂−αi + βi∂+βi)

+
√

κ2 + m2(−α1α2 + α3α4 − α5α6 − α7α9 + β1β2 − β3β4 + β5β6 + β7β8)

+
√

κ2 − m2(α1β3 + α3β1 − α5β7 − α7β5 − β2α4 + β4α2 + β6α8 − β8α6)

]
,

(4.33)

which describes eight fermionic fluctuations with 4+4 sets of the frequencies,√
n2 − m2 +

5κ2

4
+

√
κ4 + n2κ2 − m2κ2,√

n2 − m2 +
5κ2

4
−

√
κ4 + n2κ2 − m2κ2, n ∈ Z .

(4.34)

The characteristic frequencies found above directly from the reduced theory action are exactly
the same as found [25, 26] from the AdS5 ×S5 string theory action expanded near the solution
(4.10).18

We conclude that expanding the superstring action near the homogeneous 2-spin solution
in Rt × S3 and expanding the reduced theory action near its counterpart in the reduced theory
one finds the same set of characteristic frequencies and thus the same one-loop contribution
to the respective partition functions.

4.3.2. Large spin limit of the folded spinning string in AdS3 × S1. As another example
we shall consider the large spin limit of the solution for a folded string in AdS5 with spin S
[29] orbiting also in S5 with momentum J [30]. As was noted in [19, 31], in the limit when
S = S√

λ
→ ∞ with J√

λ ln S
fixed this solution simplifies and becomes homogeneous. In terms

of the embedding coordinates (see appendix B) it takes the form (cf (4.10))

Y0 + iY−1 = cosh(�σ ) eiκτ , Y1 + iY2 = sinh(�σ ) eiκτ , Y3 = Y4 = 0,

X1 = X2 = X3 = X4 = 0, X5 + iX6 = eiντ , κ2 = �2 + ν2,
(4.35)

where it is assumed that κ ∼ � � 1, and ν
κ

is fixed (so that the closed-string periodicity
condition in σ is satisfied asymptotically). This solution is, in fact, related to the J1 = J2

solution in Rt × S3 by a formal analytic continuation [19].
Using the parametrization in terms of the embedding coordinates discussed in appendix B

we obtain the corresponding coset element f ,

f =
(

fA 04

04 fS

)
,

fA =

⎛
⎜⎜⎜⎜⎝

e
iκτ
2 cosh �σ

2 0 0 −e
3iκτ

2 sinh �σ
2

0 e
iκτ
2 cosh �σ

2 e− iκτ
2 sinh �σ

2 0

0 e
iκτ
2 sinh �σ

2 e− iκτ
2 cosh �σ

2 0

−e− 3iκτ
2 sinh �σ

2 0 0 e− iκτ
2 cosh �σ

2

⎞
⎟⎟⎟⎟⎠ , (4.36)

18 Starting with the string solution in the form (4.10) used in [25] one finds that the fermions are naturally periodic
[28].
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fS =

⎛
⎜⎜⎝

e
iντ
2 0 0 0

0 e
iντ
2 0 0

0 0 e− iντ
2 0

0 0 0 e− iντ
2

⎞
⎟⎟⎠ .

The counterpart of this solution in the reduced theory is described by19

g0 =
(

gA 04

04 gS

)
, v ≡ e−i κ2τ

ν , (4.37)

gA =

⎛
⎜⎜⎜⎜⎝

0 κ
ν
v − �

ν
v 0

− κ
ν
v∗ 0 0 �

ν
v∗

�
ν
v 0 0 − κ

ν
v

0 − �
ν
v∗ κ

ν
v∗ 0

⎞
⎟⎟⎟⎟⎠ , gS =

⎛
⎜⎜⎝

i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

⎞
⎟⎟⎠ ,

A+0 =

⎛
⎜⎜⎜⎜⎝

iν
2 0 0 0
0 − iν

2 0 0 04

0 0 iν
2 0

0 0 0 − iν
2

04 04

⎞
⎟⎟⎟⎟⎠ , (4.38)

A−0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

i(m2+κ2)

2ν
0 0 0

0 − i(�2+κ2)

2ν
0 0 04

0 0 i(�2+κ2)

2ν
0

0 0 0 − i(�2+κ2)

2ν

04 04

⎞
⎟⎟⎟⎟⎟⎟⎠

.

�R0 = �L0 = 0. (4.39)

Note that again the point-like string (BMN vacuum) solution is a particular case of (4.35),
that is when � = 0 and ν = κ . The corresponding limit of (4.37) is related by a simple H
gauge transformation to a special case of the vacuum in (2.27).

This reduced theory background is very similar to the one in (4.13) corresponding to the
homogeneous string solution in Rt × S3. Carrying out a similar analysis of the quadratic
fluctuation spectrum in the reduced theory action one finds the following bosonic

1 ×
√

n2 + 2κ2 + 2
√

κ4 + n2ν2,

1 ×
√

n2 + 2κ2 − 2
√

κ4 + n2ν2,

2 ×
√

n2 + 2κ2 − ν2,

4 ×
√

n2 + ν2

(4.40)

and fermionic

4 ×
√

n2 + κ2 +
ν2

4
+

√
ν2(n2 + κ2),

4 ×
√

n2 + κ2 +
ν2

4
−

√
ν2(n2 + κ2)

(4.41)

fluctuation frequencies. These are indeed exactly the same as following directly from the
AdS5 × S5 superstring action [31].

19 Here the μ parameter of the reduced theory is identified as ν.

22



J. Phys. A: Math. Theor. 42 (2009) 375204 B Hoare et al

5. Concluding remarks

In this paper we discussed how to relate the semiclassical expansion in the original AdS5 ×S5

superstring theory (2.2) and the corresponding reduced theory (2.24). We considered several
classes of string solutions, found their reduced model counterparts and then verified that the
respective spectra of quadratic fluctuations match. This implies the matching of the one-loop
partition functions (1.1).

Given that the classical equations (and their solutions) in the string theory and in the
reduced theory are closely related, one may, of course, expect the quadratic fluctuations to
match as well. However, this matching is still rather non-trivial given that one needs to partially
fix the H × H gauge symmetry of the string equations written in terms of the reduced theory
variables (2.20) in order to be able to construct a local Lagrangian of the reduced theory.
One of the remaining open questions is if the reduced Lagrangians obtained via different
gauge fixings (in particular, those parametrized by an automorphism τ , see (2.22), (2.25)) are
actually equivalent at the quantum level.

It would be interesting to understand the equivalence between the corresponding quadratic
fluctuation spectra in the string theory and in the reduced theory using their closely connected
integrable structures. Indeed, fluctuation frequencies near particular finite gap solutions can
be found directly from the corresponding algebraic curve description (see, e.g., [32]).

Another important open problem is to find out if the one-loop matching between the
string and the reduced theory partition functions extends to the two-loop level. If it does,
that would be a truly non-trivial confirmation of our conjecture (1.1). On the string theory
side, the two-loop computation of the partition function was done for the infinite spin (or
‘homogeneous’) limit of the folded string solution [19, 20]. What remains is to compute the
two-loop correction starting with the reduced theory action (2.24) and expanding it near the
corresponding solution (4.37) and (4.38). Since the analysis of quadratic fluctuations on the
reduced theory side is generally simpler than on the string theory side we expect that this
two-loop computation may not be too complicated (cf also [4]).

Finally, as a step towards a solution of the reduced theory based on its integrability
it remains to compute the corresponding 2D Lorentz-invariant massive S-matrix for the
elementary excitations above the ‘trivial’ vacuum. There are technical complications when
this is done directly by starting with the reduced theory based on the symmetrically gauged
(τ = 1) WZW model (2.25) expanded near the vacuum g = 1. However, one may try to expand
near other vacua like (2.27) or consider a reduced model with a non-trivial automorphism τ

(expecting still that the S-matrix should not depend on a choice of τ ).
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Appendix A. PSU (2, 2|4): some definitions and notation

Here we will present a particular matrix representation of PSU(2, 2|4) which we used in the
main text (see also [21, 1]). In particular, we shall make explicit the identification of the
g = sp(2, 2)× sp(4) subalgebra whose corresponding group G is the subgroup G in the F/G

coset sigma model, and also the group G in the G/H gauged WZW model.
Let us define the following matrices

� =
(

� 04

04 14

)
, K =

(
K 04

04 K

)
, �2 = 14, K2 = −14, (A.1)

� =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , K =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ .

We can then write a generic element of the algebra psu(2, 2|4) as follows

f =
(

A X

Y B

)
, (A.2)

f = −�−1f†�, Tr A = Tr B = 0,

f† =
(

A† −iY†

−iX† B†

)
.

Here A and B are 4 × 4 matrices whose components are commuting while X and Y are 4 × 4
matrices whose components are anticommuting. We then have the following conditions on
A, B, X and Y,

�A†� = −A, B† = −B, i�Y† = X, iX†� = Y. (A.3)

Thus A ∈ su(2, 2) and B ∈ su(4). We can then decompose f under a Z4 grading as follows

f = f0 ⊕ f1 ⊕ f2 ⊕ f3, (A.4)

−K−1fstr K = ir fr , fstr =
(

At −Yt

Xt B

)
.

It is possible to write generic elements of f0,2 as

f0,2 =
(

A0,2 04

04 B0,2

)
, (A.5)

A0 = KAt
0K, B0 = KBt

0K,

A2 = −KAt
2K, B2 = −KBt

2K,

and generic elements of f1,3 as

f1,3 =
(

04 X1,3

Y1,3 04

)
, (A.6)

iX1 = −KYt
1K, iX3 = KYt

3K.

The subspaces of this decomposition satisfy the following commutation relations

[fi , fj ] ⊂ fi+j mod 4. (A.7)
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We identify f0 = g and f2 = p. Then g forms a subalgebra, and it is this algebra whose
corresponding group is the group G in the F/G coset sigma model and in the G/H gauged
WZW model.

It is now possible to perform a further Z2 decomposition, which allows us to define the
group H in the G/H gauged WZW model. To do this we identify the following fixed element
T ∈ f2

T = i

2
diag(1, 1,−1,−1, 1, 1,−1,−1). (A.8)

The Z2 decomposition is then given by

f‖r = −[T , [T , fr ]], f⊥r = −{T , {T , fr}}. (A.9)

It should be noted that this is an orthogonal decomposition, that is

f = f‖ ⊕ f⊥,

STr(f‖f⊥) = 0.
(A.10)

Then

[f⊥, f⊥] ⊂ f⊥, [f⊥, f‖] ⊂ f‖, [f‖, f‖] ⊂ f⊥. (A.11)

We identify h = f⊥0 , m = f
‖
0, a = f⊥2 , n = f

‖
2. Elements from these subspaces satisfy

[a, a] ⊂ 0, [a, h] ⊂ 0, [h, h] ⊂ h, [m,m] ⊂ h,

[m, h] ⊂ m, [m, a] ⊂ n, [n, a] ⊂ m
(A.12)

Here h is a subalgebra; the corresponding subgroup is then identified as the group H in the
G/H gauged WZW model. It is possible to show that h has the following form⎛

⎜⎜⎝
h1 02 02 02

02 h2 02 02

02 02 h3 02

02 02 02 h4

⎞
⎟⎟⎠ , (A.13)

where each hi is a copy of su(2), i.e. h = su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2) ∼= so(4) ⊕ so(4).
Finally as discussed in [21], it is possible to use the κ-symmetry to choose fermionic

currents to take the form,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 • •
0 0 0 0 0 0 • •
0 0 0 0 • • 0 0
0 0 0 0 • • 0 0
0 0 • • 0 0 0 0
0 0 • • 0 0 0 0
• • 0 0 0 0 0 0
• • 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.14)

This is exactly the same as the structure of the fermionic elements of the ‖ space. Thus it is
always possible to choose the κ-symmetry gauge such that the fermionic currents live in the ‖

space.
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Appendix B. Parametrization in terms of embedding coordinates

Here we shall discuss the relation between the embedding coordinates in AdS5 × S5 and
parametrization of the corresponding PSU(2, 2|4) coset elements (see [21] for details).

Let us define six real coordinates YM on R4,2 (M = −1, 0, . . . , 4) and six real coordinates
XI on R6 (I = 1, 2, . . . , 6). To define AdS5 and S5 embedded in R4,2 and R6 we impose

η
4,2
MNYMYN = −1, η

6,0
IJ XIXJ = 1,

η4,2 = diag(−1, −1, 1, 1, 1, 1), η6,0 = diag(1, 1, 1, 1, 1, 1).
(B.1)

Finally we define another set of coordinates, t, yi on AdS5 and θ, xi on S5, i = 1, 2, 3, 4:

Y 1 + iY 2 = y1 + iy2

1 − y2

4

, Y 3 + iY 4 = y3 + iy4

1 − y2

4

, (B.2)

Y 0 + iY−1 = 1 + y2

4

1 − y2

4

eit ,

X1 + iX2 = x1 + ix2

1 + x2

4

, X3 + iX4 = x3 + ix4

1 + x2

4

, (B.3)

X5 + iX6 = 1 − x2

4

1 + x2

4

eiθ .

Here y2 = yiyi and x2 = xixi . The corresponding metrics of AdS5 and S5 in terms of
t, yi, θ, xi are

η
4,2
MN dYM dYN = −

(
1 + y2

4

1 − y2

4

)2

dt2 +
dyi dyi(
1 − y2

4

)2 ,

η
6,0
IJ dXI dXJ =

(
1 − x2

4

1 + x2

4

)2

dθ2 +
dxi dxi(
1 + x2

4

)2 .

(B.4)

A suitable choice of a bosonic coset element would be such that STr(f −1df )2 coincides with
the sum of the two metrics in (B.4). This allows us to relate the embedding coordinates with
the bosonic coset element directly:

f =
(

fA 04

04 fS

)

=
(

exp
(

i
2 tγ5

)
04

04 exp
(

i
2θγ5

)
) ⎛

⎜⎝
1√

1− y2

4

(
14 + 1

2yiγi

)
04

04
1√

1+ x2
4

(
14 + i

2xiγi

)
⎞
⎟⎠ . (B.5)

Here γk are the so(5) Dirac matrices chosen as

γ1 =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠ , γ2 =

⎛
⎜⎜⎝

0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

⎞
⎟⎟⎠ , γ3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ ,

γ4 =

⎛
⎜⎜⎝

0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

⎞
⎟⎟⎠ , γ5 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (B.6)

26



J. Phys. A: Math. Theor. 42 (2009) 375204 B Hoare et al

B.1. AdS2 × S2

Let us now consider a special case of an AdS2 × S2 subspace of AdS5 × S5:

−(Y−1)2 − (Y 0)2 + (Y 1)2 = −1,

(X1)2 + (X5)2 + (X6)2 = 1,

Y2 = Y3 = Y4 = y1 = y3 = y4 = 0,

X2 = X3 = X4 = x1 = x3 = x4 = 0.

(B.7)

The explicit coordinates on AdS2 × S2 are t, y = y1, θ, x = x1.
The corresponding parametrization of the PSU(2, 2|4) element (B.5) is then

fA =
√

1 − y2

4

⎛
⎜⎜⎜⎝

e
it
2 0 0 iy

2 e
it
2

0 e
it
2

iy
2 e

it
2 0

0 − iy
2 e− it

2 e− it
2 0

− iy
2 e− it

2 0 0 e− it
2

⎞
⎟⎟⎟⎠ ,

fS =
√

1 + x2

4

⎛
⎜⎜⎜⎝

e
iθ
2 0 0 − x

2 e
iθ
2

0 e
iθ
2 − x

2 e
iθ
2 0

0 x
2 e− iθ

2 e− iθ
2 0

x
2 e− iθ

2 0 0 e− iθ
2

⎞
⎟⎟⎟⎠ .

(B.8)

Following the prescription of Pohlmeyer reduction as discussed in section 2, we can make a G
gauge transformation, fb → fbg

′, such that
(
f −1

b ∂+fb

)
p

∈ a. We can then use the remaining

conformal diffeomorphism invariance to set
(
f −1

b ∂+fb

)
p

= μ+T . In terms of the embedding
coordinates this then implies

−(∂+Y
−1)2 − (∂+Y

0)2 + (∂+Y
1)2 = −μ2

+,

(∂+X
1)2 + (∂+X

5)2 + (∂+X
6)2 = μ2

+.
(B.9)

The next step of the reduction is to find a element g0 of G such that
(
f −1

b ∂−fb

)
p

= μ−g−1
0 T g0.

The following element of G satisfies this relation

g0 =
(

gA 04

04 gS

)
, (B.10)

gA =

⎛
⎜⎜⎝

i cosh φA 0 0 sinh φA

0 −i cosh φA sinh φA 0
0 sinh φA i cosh φA 0

sinh φA 0 0 −i cosh φA

⎞
⎟⎟⎠ ,

gS =

⎛
⎜⎜⎝

i cos φS 0 0 i sin φS

0 −i cos φS i sin φS 0
0 i sin φS i cos φS 0

i sin φS 0 0 −i cos φS

⎞
⎟⎟⎠ ,

provided the following relations are satisfied

−(∂−Y−1)2 − (∂−Y 0)2 + (∂−Y 1)2 = −μ2
−,

(∂−X1)2 + (∂−X5)2 + (∂−X6)2 = μ2
−,

(B.11)

−∂+Y
−1∂−Y−1 − ∂+Y

0∂−Y 0 + ∂+Y
1∂−Y 1 = −μ2 cosh 2φA,

∂+X
1∂−X1 + ∂+X

5∂−X5 + ∂+X
6∂−X6 = μ2 cos 2φS,

μ2 =
√

μ2
+μ

2−.

(B.12)
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It is possible to check that the corresponding gauge fields A± in (2.22) vanish in this
case.

Appendix C. Fluctuations near AdS2 × S2 solutions: special cases

In section 3.2 it was shown that for a classical solution in AdS2 × S2 the bosonic fluctuation
equations are

∂+∂−ζi + μ2 cosh 2φA ζi = 0, i = 1, . . . , 4,

∂+∂−ζi + μ2 cos 2φS ζi = 0, i = 5, . . . , 8,
(C.1)

and the fermionic fluctuation equations are given by the following sets of coupled equations

∂−ϑi + μ cos φS cosh φAϑ ′
i + μ sin φS sinh φAϑ ′

i+1 = 0,

∂+ϑ
′
i − μ cos φS cosh φAϑi + μ sin φS sinh φAϑi+1 = 0, i = 1, 3, 5, 7

∂−ϑi+1 + μ cos φS cosh φAϑ ′
i+1 − μ sin φS sinh φAϑ ′

i = 0,

∂+ϑ
′
i+1 − μ cos φS cosh φAϑi+1 − μ sin φS sinh φAϑi = 0.

(C.2)

Below we shall consider some special cases of these equations.

C.1. Giant magnon

Here we shall check the general claim that the above equations give the same one-loop
correction as the calculation following directly from the string theory action written in terms
of coordinates on AdS5 × S5 with the example of the giant magnon solution [10, 33]. For the
giant magnon string solution we decompactify the spatial world-sheet direction (the energy
and angular momentum of the string are taken to infinity). Its counterpart in the reduced theory
is the vacuum and kink solutions of the sinh-Gordon and sine-Gordon equations respectively

φA = 0, φS = 2 arctan e
σ−vτ√

1−v2 . (C.3)

When taking the large energy/spin limit we rescale the world-sheet coordinates by μ and then
send μ → ∞. As a result, μ scales out of the fluctuation equations (C.1) and (C.2). We may
also change to the Lorentz-boosted coordinates

� = σ − vτ√
1 − v2

, T = σ − vτ√
1 − v2

. (C.4)

The bosonic AdS5 fluctuation equations are given by four copies of

∂+∂−ζA + ζA = 0. (C.5)

The bosonic S fluctuation equations are given by four copies of

∂+∂−ζS + (1 − 2 sech 2�)ζS = 0. (C.6)

As discussed in [33] to compute the one-loop fluctuation operator determinant for the giant
magnon string solution we should first look for the plane-wave solutions of the fluctuation
equations. The plane-wave solutions of (C.5) are proportional to

ζA = eik�+iωT , ω2 = k2 + 1, (C.7)

and of (C.6) to

ζS = eik�+iωT (tanh � + ik), ω2 = k2 + 1. (C.8)
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Finally, the fermionic fluctuation equations are given by eight copies of

∂−ϑ − tanh �ϑ ′ = 0,

∂+ϑ
′ + tanh �ϑ = 0.

(C.9)

After some simple maipulation with expressions in [33] it is easy to see that this system has
plane-wave solutions proportional to

ϑ = − (1 − v)|ω − k|√
1 − v2

eik�−iωT e
i
2 (arctan(−ω sinh 2�)−arctan(k tanh 2�)) sech �

√
|ω cosh 2� − k|,

ϑ ′ = eik�−iωT e
i
2 (arctan(ω sinh 2�)−arctan(k tanh 2�)) sech �

√
|ω cosh 2� + k|,

ω2 = k2 + 1. (C.10)

Following [33] we may then compute the stability angles for these solutions. To do this we
put the system in a box of length L � 1, with σ ∼ σ + L. From the form of the classical
solution the system is also periodic in time with period Tp = L

v
. The stability angle ν of an

arbitrary fluctuation δφ is defined to be

δφ(τ + Tp, σ ) = e−iνδφ(τ, σ ). (C.11)

From (C.7) the four stability angles from the bosonic AdS5 sector are

νk(ζA) = L

v

ω + vk√
1 − v2

. (C.12)

From (C.8) the four stability angles from the bosonic S5 sector are

νk(ζS) = L

v

ω + vk√
1 − v2

+ 2 cot−1 k. (C.13)

Finally, from (C.10) the eight stability angles from the fermionic sector are

νk(ϑ, ϑ ′) = L

v

ω + vk√
1 − v2

+ cot−1 k. (C.14)

These agree exactly with the results in [33] derived directly by considering fluctuations of
coordinates on AdS5 × S5. We then reproduce the final result of [33] that the sum over the
stability angles (with a negative sign for the fermionic contribution) vanishes and thus so does
the one-loop correction to the logarithm of the partition function or the energy of the giant
magnon.

C.2. Some other examples

Here we briefly consider some other interesting solutions in AdS2 × S2. As discussed in [13]
the reduced theory solutions

φS = am

(
μ (τ − vσ)

k
√

1 − v2
, k2

)
, φA = 0, (C.15)

and

φS = π

2
+ am

(
μ (σ − vτ)

k
√

1 − v2
, k2

)
, φA = 0, (C.16)

give rise to single-spin helical strings, effectively living on Rt × S2.20

These solutions include some special cases. For example if we take the v → 0 limit in
(C.15) the corresponding string solution is a string pulsating on S2, which is also discussed in

20 am is the Jacobi amplitude function.
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[36]. If we take the k → ∞, μ → ∞, μ

k
→ 1 limit of (C.16) we get the sine-Gordon kink

solution, which, as previously discussed, corresponds to the giant magnon string solution [10].
For both (C.15) and (C.16) the bosonic fluctuation equations from the AdS5 sector are

trivial, as we just have the vacuum solution. For the S5 sector we obtain four copies of the
following equations:(

∂+∂− + μ2

[
2cn2

(
μ (τ − vσ)

k
√

1 − v2
, k2

)
− 1

])
ζS = 0 (C.17)

for (C.15) and (
∂+∂− + μ2

[
1 − 2cn2

(
μ (σ − vτ)

k
√

1 − v2
, k2

)])
ζS = 0. (C.18)

for (C.16). These are strongly related to the n = 1 Lamé equation, [37]. For the fermionic
sector we obtain eight copies of the following coupled systems

∂−ϑ + μ cn

(
μ (τ − vσ)

k
√

1 − v2
, k2

)
ϑ ′ = 0 ∂+ϑ

′ − μ cn

(
μ (τ − vσ)

k
√

1 − v2
, k2

)
ϑ = 0 (C.19)

for (C.15) and

∂−ϑ − μ sn

(
μ (σ − vτ)

k
√

1 − v2
, k2

)
ϑ ′ = 0 ∂+ϑ

′ + μ sn

(
μ (σ − vτ)

k
√

1 − v2
, k2

)
ϑ = 0 (C.20)

for (C.16). In various special cases the spectra and determinants of these operators have been
studied in much detail [37–39]. Therefore, it should be possible to compute the corresponding
one-loop correction to the logarithm of the partition function at least numerically.

Appendix D. Examples of reduced theory counterparts of some simple string solutions

Here we shall consider the reduced theory counterparts of the homogeneous string solutions
on Rt × S3 and AdS3 × S1. Compared to the discussion in section 4.3 we shall assume the
trivial embedding of these solutions into the reduced theory when it can be truncated to the
complex sine-Gordon or complex sinh-Gordon models, respectively. The bosonic part of the
reduced theory counterpart of AdS3 × S3 string theory is described by (∂± = ∂τ ± ∂σ ),21

LB = ∂+ϕ∂−ϕ + cot2 ϕ ∂+θ∂−θ + ∂+φ∂−φ + coth2 φ ∂+χ∂−χ +
μ2

2
(cos 2ϕ − cosh 2φ).

(D.1)

A particular simple solution of the resulting equations of motion is22

ϕ = ϕ0, φ = φ0, θ = nσ + aτ, χ = kσ + bτ , (D.2)

μ2 sin4 ϕ0 = n2 − a2, μ2 sinh4 φ0 = k2 − b2. (D.3)

In the case of the J1 = J2 homogeneous string solution in Rt × S3 (4.10) we have

t = κτ, X1 = 1√
2

ei(wτ+mσ), X2 = 1√
2

ei(wτ−mσ), κ2 ≡ μ2 = w2 + m2. (D.4)

In the reduced theory we have μ2 cos 2ϕ = ∂+Xi∂−X∗
i , so that the corresponding solution has

ϕ = ϕ0 = const, with

cos 2ϕ0 = w2 − m2

w2 + m2
, sin ϕ0 = m

μ
, cos ϕ0 = w

μ
. (D.5)

21 This Lagrangian is found by starting with the reduced theory based on the symmetrically gauged G/H =
SO(1, 2)/SO(2) × SO(3)/SO(2) gWZW model and integrating out the SO(2) × SO(2) gauge fields [1].
22 More general solutions of CSG were discussed in [12, 13].
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Also, for θ = nσ + aτ , the equation of motion for φ implies

μ2 sin4 ϕ0 = n2 − a2, i.e.
m4

w2 + m2
= n2 − a2. (D.6)

Note that here we cannot set n = 0. If σ is periodic n should be an integer, which imposes
constraints on m and w. A special solution with w = 0 (i.e., J = 0) corresponds to ϕ0 = π

2
and m = n.

The embedding of the circular string solution into the reduced model considered in (4.13)
was different—it contained only 2D time dependence. Note that had we started with the
axially gauged SO(3)/SO(2) WZW model the cot2 ϕ in the kinetic term would be replaced
by tan2 ϕ and the a2 and n2 terms in (D.6) would change places. In this case we could get a
solution of the reduced theory which looks more like that found in (4.13).

Indeed, if we replace v by eiθ , ω
κ

by cos ϕ and m
κ

by sin ϕ in (4.13) and then integrate out
A± at a classical level, we get the complex sine-Gordon model with tan2 ϕ in the kinetic term.
This is also related to the fact that the point-like or BMN limit of the above solution (m → 0)
corresponds to the trivial vacuum in the reduced theory (see [3]), which was not the case in
(4.13).23

For the homogeneous solution in AdS3 × S1, (4.35), (i.e., the limit of large κ and large
� when we can ignore periodicity of σ ), we have ∂+Y0∂−Y0 + ∂+Y−1∂−Y−1 − ∂+Y1∂−Y1 −
∂+Y2∂−Y2 = μ2 cosh 2φ (μ = ν). Then

κ2 + �2 = μ2 cosh 2φ0, sinh φ0 = �

μ
, cosh φ0 = κ

μ
, μ =

√
κ2 − �2. (D.7)

Thus the solution is

φ = φ0, χ = kσ + bτ, k2 − b2 = μ2 sinh4 φ0, sinh φ0 = �

μ
. (D.8)

In the scaling limit k and m need not be integers. As long as we decompactify σ we can always
rotate b to 0 by a 2D Lorentz transformation since this is a symmetry of the reduced theory.
Also, k needs to be non-zero.

Starting with the axially gauged or ‘T-dual’ model with coth2 φ → tanh2 φ would
interchange k and b. Again, the reduced theory embedding of the solution (4.35) discussed in
(4.37), (4.38) was only τ -dependent and thus was different.

Appendix E. An alternative computation of reduced theory fluctuation frequencies

In section 4.3 we partially fixed the H gauge symmetry such that two of the physical fluctuation
fields in η‖ decoupled from the remaining unphysical fluctuation fields. However, this strategy
may not necessarily work for other homogeneous solutions, e.g., the ‘small’ spinning string
in Rt ×S5 discussed in [23, 24]. Here we shall use the example of the S5 sector of the reduced
theory solution corresponding to the two-spin homogeneous string in Rt × S3 (section 4.3.1),
to discuss an alternative strategy for computing the characteristic frequencies.

We introduce the following parametrization of η‖, η⊥ and δA±,

η‖ =

⎛
⎜⎜⎝

0 0 b1 + ib2 b3 + ib4

0 0 −b3 + ib4 b1 − ib2

−b1 + ib2 b3 + ib4 0 0
−b3 + ib4 −b1 − ib2 0 0

⎞
⎟⎟⎠ , (E.1)

23 It should be noted that here the gauge group, SO(2), is Abelian and thus the axial gauging, τ(u) = −u, is allowed.
For non-Abelian groups this is not possible as such a map τ is no longer an automorphism of the algebra. Instead,
we may use automorphisms like those discussed in section 2.2.
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η⊥ =

⎛
⎜⎜⎝

ih1 h2 + ih3 0 0
−h2 + ih3 −ih1 0 0

0 0 ih4 h5 + ih6

0 0 −h5 + ih6 −ih4

⎞
⎟⎟⎠ , (E.2)

δA+ =

⎛
⎜⎜⎝

ia+1 0 0 0
0 −ia+1 0 0
0 0 ia+4 0
0 0 0 −ia+4

⎞
⎟⎟⎠ ,

δA− =

⎛
⎜⎜⎝

ia−1 a−2 + ia−3 0 0
−a−2 + ia−3 −ia−1 0 0

0 0 ia−4 a−5 + ia−6

0 0 −a−5 + ia−6 −ia−4

⎞
⎟⎟⎠ .

(E.3)

Using the H gauge freedom we set the off-diagonal components of δA+ to zero. When we
substitute these expressions into the bosonic part of the quadratic fluctuation Lagrangian (4.3),
we get a Lagrangian with constant coefficients. As in section 4.3.1 the fields decouple into
two smaller sectors, the first sector containing b3, b4 and the diagonal components of η⊥, δA±,
and the second sector containing b1,b2 and the off-diagonal components of η⊥, δA±.

We can easily integrate out the diagonal components of δA±, and then end up with a
Lagrangian for 14 fields (4 of η‖, 6 of η⊥, 4 of δA−), some of which are unphysical. Using
the fact that we have the two decoupled sectors, we can split the corresponding 14 × 14 mass
matrix into two parts, a 4 × 4 matrix containing b3 and b4, and a 10 × 10 matrix containing b1

and b2.
Substituting ei(�τ−nσ) into the equations of motion we find that the 4 × 4 matrix takes the

form⎛
⎜⎜⎜⎜⎜⎜⎝

4(n2 − �2) 8iκ� − 2m(n2−�2)√
κ2−m2 − 2m(n2−�2)√

κ2−m2

−8iκ� −4(4m2 − n2 + �2) 4iκm�√
κ2−m2

4iκm�√
κ2−m2

2m
√

κ2−m2(n2−�2)

−κ2+m2 − 4iκm�√
κ2−m2 −m2(n2−�2)

−κ2+m2 −m2(n2−�2)

−κ2+m2

2m
√

κ2−m2(n2−�2)

−κ2+m2 − 4iκm�√
κ2−m2 −m2(n2−�2)

−κ2+m2 −m2(n2−�2)

−κ2+m2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (E.4)

This matrix has rank 2, i.e. it has two non-vanishing eigenvalues. The resulting two
characteristic frequencies are then found to be the same as those in (4.26) in section 4.3.1,√

n2 + 2κ2 − 2m2 ± 2
√

n2κ2 + (m2 − κ2)2, n ∈ Z. (E.5)

The 10×10 matrix has rank 10. The condition that its determinant vanishes gives the following
characteristic fluctuation frequencies,

2 ×
√

n2 + κ2 − 2m2, n ∈ Z, (E.6)

and

2 × n ± κ, 2 × n ± κ2 − 2m2

κ
. n ∈ Z. (E.7)

The frequencies in (E.6) are the same as those in (4.25) in section 4.3.1 (i.e., like (E.5) they
match the frequencies found from the conformal-gauge string theory).

The frequencies in (E.7) give a trivial (κ, m-independent) contribution to the one-loop
partition function that should be cancelled against ghost (or path integral measure) terms.
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The approach employed here, i.e. evaluating a larger mass matrix including unphysical
fluctuations in addition to physical fluctuations, should also be applicable to other
homogeneous solutions. In particular, we can apply it to the homogeneous string solution
discussed in section 4.3.2. However, it is not clear whether it may be useful for extending
the computation to the two-loop level as the unphysical modes (which we did not explicitly
decouple above, as this was irrelevant at the one-loop level), may get coupled through the
interaction terms.
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